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Abstract:

Using an idea of Erdds the paper establishes a criterion for the linear independence of
infinite products which consist of rational numbers. A criterion for irrationality is obtained as
a consequence.
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Introduction

Following Erdds [3] we prove

Theorem 1 Let K be a non-negative integer and let {a,}>°; be a non-decreasing se-
quence of positive integers such that
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(K+2m (R+2)m

1 < liminf a, < lim sup anp, < Q.
n—00 n—00

Then the numbers 1,[T", (1 + —=5), T2 (1 + 7img), - and [ [ (1 + rp=) are

n=1 nan+1
linearly independent over the rational numbers.

As a consequence of this theorem we obtain a criterion for infinite products to be irrational.

Theorem 2 Let {a,}>°, be a non-decreasing sequence of positive integers such that

1
1 < liminf a2"
n—oo

1
on
n

< limsupas” < oo.

n—oo

Then the number []>7 (1 + i) is irrational.

The authors do not know if the number )", (1 + 5zry—7) is irrational for all se-
quences {a, }>°, of positive integers although we know from another theorem of Erdés [3]

that the number Y | —4— is irrational for every sequence {a,}52, of positive integers.
- n

Hanél and Kolouch [8] proved that if lim,, . af%" = oo and a, € Z" then the number
L1+ %) is irrational, but we do not know if it is transcendental.

It is not difficult to prove that [[)”,(1 + 5=) = 5, but we do not know if the
number [[°7 (1 + M) is irrational for all sequences {a,}>°, of positive integers.
Erdés [4] asked if the number > 7, m
positive integers.

A simple calculation shows that []>7,(1 — =) = 5. On the other side the authors
are not able to decide if the number [T°7 | (14 -5 ) is irrational. In fact we are not able to
prove that the number []>° | (14 -%) is irrational for any k € Z*, k # 1. This is analogous
to the problem of the irrationality of the function ¢(k) = > " L =T, (1 + zﬁ) for

is irrational for all sequences {a,}>, of

n=1 nk
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k € Z*, k # 1 where {p,}:°, is the increasing sequence of all primes. We know that for
even k the number ((k) is transcendental and that {(3) is an irrational number. But we
do not know if the number J[7 (1 + - L or) is irrational for any k € 7tk #1.

Hanél and Tijdeman [10] proved “that if {v,}52, is an unbounded non-decreasing
sequence of positive integers such that v, = o(y/n), then the numbers 1 and >~ :,",
where t € N, are Q-linearly independent. On the other side we do not know if the numbers
[T, (1 + %) and T2, (1 + %(,n)) are Q-linearly independent where m(n) denotes the
number of primes less than or equal to n. Moreover, we do not know if the number
[T22,(1+ &) is irrational.

Erdés and Straus [5] proved the Q-linear 1ndependence of the numbers 1, >~>7 | n,),
S 20 and S & where b, € Z and b, < nz~* for all large n and where o(n) and

n=1 nl )

¢(n) denote the sum of divisors of n, and Euler’s totient function of n respectively. A
nice result proved recently is due to Deajim and Siksek [2]. They proved the Q-linear
independence of the numbers >~ 2 (.”) where o (n) denotes the sum of the k-th powers
of the positive divisors of n, assuming a standard conjecture of Schinzel on the prime
values taken by a family of polynomials. Several general results concerning the linear
independence of infinite series can be found in [7] and [9]. For other results in this theory
see [6], [11], [12] or [14], for instance.

Choi and Zhou [1] obtained some results regarding the linear independence of infinite
products of rational numbers. There exists a nice book by Nishioka [13] which contains
a review of results concerning the linear and algebraic independence of infinite products
and series which use the strong tools of Mahler’s method.

Our main theorem is Theorem 3 concerning Q-linear independence. As a conse-
quence of Theorem 3 we obtain a criterion for irrationality in Theorem 4.

We denote by Z, Z", N, and Q the set of all integers, positive integers, natural
numbers including zero, and rational numbers, respectively. The functions 7 (x), [z], and
log, x are the number of primes less than or equal to =, the greatest integer less than or
equal to z, and the logarithm to the base 2 of the number z, respectively.

Main result

Our first theorem is a basic result which deals with the Q-linear independence of infinite
products of rational numbers.

Theorem 3 Let K be a positive integer and let £ be a positive real number. Assume
that {a;,}5°, and {b;,}3>, (i = 1,..., K) are sequences of positive integers such that
{a1,}5%, is non-decreasing,

lim mfa“(“) < lim supa“(“) < 00 (1)
n—00 n—00
and
lim ——=— =0, forall j,ie{l,...,K}, i>}j. (2)
n—0co bi,naj,n
Suppose that for every sufficiently large number n
1+ L
bin <ape U i=1,.,K, (3)

arp > ', (4)



and
1 1

a log§+6 logo aj n 108%+E logg al,n .
AinGy < a1 < Aipay, , i=2,.., K. (5)

Then the products [[2, (14 22) .. and []>,(1+ Z‘Z—"), and the number 1 are Q-linearly

al,n

independent.

Example 1 Let K be a positive integer greater than 1. As an immediate consequence
of Theorem 3 we obtain that the products

00 . 7j2ﬂ([n/4]) +nn
H _I_ K2[10g2 n] n ’
n=1 2 + 5
where j = 1,..., K — 1, are Q-linearly independent.

Our second theorem is a consequence of the previous theorem and deals with the
irrationality of infinite products over the rational numbers
Theorem 4 Let ¢ be a positive real number. Suppose that {a,}>°, and {b,}>°, are two
1
sequences of positive integers with {a, }>° ; non-decreasing and such that lim inf, ., a?" <

: o log; ") logy an
limsup,,_,., a3z’ < co. Assume that a,, > n'*< and b, < an*? %82 hold for every large

n. Then the product [[~, (1 + 2—2) is an irrational number.
Example 2 From Theorem 4 we obtain that the numbers

— 57(m) 41 i om(n) | 5
H (1 + 2llog2 loga ] ) and H (1 + 2llos2 loga ] )
n=1 22 +n n=1 22 + 27(n)

are irrational.
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