A CRITERION FOR LINEAR INDEPENDENCE OF INFINITE PRODUCTS

Jaroslav Hančl ${ }^{1}$, Ondřej Kolouch ${ }^{2}$ and Lukáš Novotný ${ }^{2}$

Department of Mathematics and Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, 30. dubna 22, 70103 Ostrava 1, Czech Republic, e-mail: hancl@osu.cz, o_kolouch@email.cz, lukas.novotny@osu.cz

Abstract

: Using an idea of Erdős the paper establishes a criterion for the linear independence of infinite products which consist of rational numbers. A criterion for irrationality is obtained as a consequence.

Keywords: Linear independence; infinite products.

Introduction

Following Erdős [3] we prove
Theorem 1 Let K be a non-negative integer and let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a non-decreasing sequence of positive integers such that

$$
1<\liminf _{n \rightarrow \infty} a_{n}^{\frac{1}{(K+2)^{n}}}<\limsup _{n \rightarrow \infty} a_{n}^{\frac{1}{(K+2)^{n}}}<\infty
$$

Then the numbers $1, \prod_{n=1}^{\infty}\left(1+\frac{1}{a_{n}+1}\right), \prod_{n=1}^{\infty}\left(1+\frac{1}{n a_{n}+1}\right), \cdots$, and $\prod_{n=1}^{\infty}\left(1+\frac{1}{n^{K} a_{n}+1}\right)$ are linearly independent over the rational numbers.

As a consequence of this theorem we obtain a criterion for infinite products to be irrational.
Theorem 2 Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a non-decreasing sequence of positive integers such that

$$
1<\liminf _{n \rightarrow \infty} a_{n}^{\frac{1}{2 n}}<\limsup _{n \rightarrow \infty} a_{n}^{\frac{1}{2 n}}<\infty
$$

Then the number $\prod_{n=1}^{\infty}\left(1+\frac{1}{a_{n}}\right)$ is irrational.
The authors do not know if the number $\prod_{n=1}^{\infty}\left(1+\frac{1}{2^{2^{n}} a_{n}+1}\right)$ is irrational for all sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ of positive integers although we know from another theorem of Erdős [3] that the number $\sum_{n=1}^{\infty} \frac{1}{2^{2^{n}} a_{n}}$ is irrational for every sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of positive integers. Hančl and Kolouch [8] proved that if $\lim _{n \rightarrow \infty} a_{n}^{\frac{1}{2^{n}}}=\infty$ and $a_{n} \in \mathbb{Z}^{+}$then the number $\prod_{n=1}^{\infty}\left(1+\frac{1}{a_{n}}\right)$ is irrational, but we do not know if it is transcendental.

It is not difficult to prove that $\prod_{n=1}^{\infty}\left(1+\frac{1}{2^{2^{n}}}\right)=\frac{4}{3}$, but we do not know if the number $\prod_{n=1}^{\infty}\left(1+\frac{1}{\left(2^{2^{n}}+1\right) a_{n}}\right)$ is irrational for all sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ of positive integers. Erdős [4] asked if the number $\sum_{n=1}^{\infty} \frac{1}{\left(2^{2^{n}}+1\right) a_{n}}$ is irrational for all sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ of positive integers.

A simple calculation shows that $\prod_{n=2}^{\infty}\left(1-\frac{1}{n^{2}}\right)=\frac{1}{2}$. On the other side the authors are not able to decide if the number $\prod_{n=1}^{\infty}\left(1+\frac{1}{n^{2}}\right)$ is irrational. In fact we are not able to prove that the number $\prod_{n=1}^{\infty}\left(1+\frac{1}{n^{k}}\right)$ is irrational for any $k \in \mathbb{Z}^{+}, k \neq 1$. This is analogous to the problem of the irrationality of the function $\zeta(k)=\sum_{n=1}^{\infty} \frac{1}{n^{k}}=\prod_{n=1}^{\infty}\left(1+\frac{1}{p_{n}^{k}-1}\right)$ for

[^0]$k \in \mathbb{Z}^{+}, k \neq 1$ where $\left\{p_{n}\right\}_{n=1}^{\infty}$ is the increasing sequence of all primes. We know that for even k the number $\zeta(k)$ is transcendental and that $\zeta(3)$ is an irrational number. But we do not know if the number $\prod_{n=1}^{\infty}\left(1+\frac{1}{p_{n}^{k}}\right)$ is irrational for any $k \in \mathbb{Z}^{+}, k \neq 1$.

Hančl and Tijdeman [10] proved that if $\left\{v_{n}\right\}_{n=1}^{\infty}$ is an unbounded non-decreasing sequence of positive integers such that $v_{n}=o(\sqrt{n})$, then the numbers 1 and $\sum_{n=1}^{\infty} \frac{n^{t v_{n}}}{n!}$, where $t \in \mathbb{N}$, are \mathbb{Q}-linearly independent. On the other side we do not know if the numbers $\prod_{n=1}^{\infty}\left(1+\frac{1}{n!}\right)$ and $\prod_{n=1}^{\infty}\left(1+\frac{n^{\pi(n)}}{n!}\right)$ are \mathbb{Q}-linearly independent where $\pi(n)$ denotes the number of primes less than or equal to n. Moreover, we do not know if the number $\prod_{n=1}^{\infty}\left(1+\frac{1}{n!}\right)$ is irrational.

Erdős and Straus [5] proved the \mathbb{Q}-linear independence of the numbers $1, \sum_{n=1}^{\infty} \frac{\sigma(n)}{n!}$, $\sum_{n=1}^{\infty} \frac{\phi(n)}{n!}$, and $\sum_{n=1}^{\infty} \frac{b_{n}}{n!}$ where $b_{n} \in \mathbb{Z}$ and $b_{n}<n^{\frac{1}{2}-\varepsilon}$ for all large n and where $\sigma(n)$ and $\phi(n)$ denote the sum of divisors of n, and Euler's totient function of n respectively. A nice result proved recently is due to Deajim and Siksek [2]. They proved the \mathbb{Q}-linear independence of the numbers $\sum_{n=1}^{\infty} \frac{\sigma_{k}(n)}{n!}$ where $\sigma_{k}(n)$ denotes the sum of the k-th powers of the positive divisors of n, assuming a standard conjecture of Schinzel on the prime values taken by a family of polynomials. Several general results concerning the linear independence of infinite series can be found in [7] and [9]. For other results in this theory see [6], [11], [12] or [14], for instance.

Choi and Zhou [1] obtained some results regarding the linear independence of infinite products of rational numbers. There exists a nice book by Nishioka [13] which contains a review of results concerning the linear and algebraic independence of infinite products and series which use the strong tools of Mahler's method.

Our main theorem is Theorem 3 concerning \mathbb{Q}-linear independence. As a consequence of Theorem 3 we obtain a criterion for irrationality in Theorem 4.

We denote by $\mathbb{Z}, \mathbb{Z}^{+}, \mathbb{N}$, and \mathbb{Q} the set of all integers, positive integers, natural numbers including zero, and rational numbers, respectively. The functions $\pi(x),[x]$, and $\log _{2} x$ are the number of primes less than or equal to x, the greatest integer less than or equal to x, and the logarithm to the base 2 of the number x, respectively.

Main result

Our first theorem is a basic result which deals with the \mathbb{Q}-linear independence of infinite products of rational numbers.

Theorem 3 Let K be a positive integer and let ε be a positive real number. Assume that $\left\{a_{i, n}\right\}_{n=1}^{\infty}$ and $\left\{b_{i, n}\right\}_{n=1}^{\infty}(i=1, \ldots, K)$ are sequences of positive integers such that $\left\{a_{1, n}\right\}_{n=1}^{\infty}$ is non-decreasing,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} a_{1, n}^{\frac{1}{(K+1)^{n}}}<\limsup _{n \rightarrow \infty} a_{1, n}^{\frac{1}{(K+1)^{n}}}<\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{a_{i, n} b_{j, n}}{b_{i, n} a_{j, n}}=0, \quad \text { for all } \quad j, i \in\{1, \ldots, K\}, \quad i>j \tag{2}
\end{equation*}
$$

Suppose that for every sufficiently large number n

$$
\begin{gather*}
b_{i, n}<a_{1, n}^{\frac{1}{\log _{2}^{1+\varepsilon} \log _{2} a_{1, n}}}, \quad i=1, \ldots, K, \tag{3}\\
a_{1, n} \geq n^{1+\varepsilon} \tag{4}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{i, n} a_{1, n}^{-\frac{1}{\log _{2}^{1+\varepsilon} \log _{2} a_{1, n}}}<a_{1, n}<a_{i, n} a_{1, n}^{\frac{1}{\log _{2}^{1+\varepsilon} \log _{2} a_{1, n}}}, \quad i=2, \ldots, K . \tag{5}
\end{equation*}
$$

Then the products $\prod_{n=1}^{\infty}\left(1+\frac{b_{1, n}}{a_{1, n}}\right), \ldots$, and $\prod_{n=1}^{\infty}\left(1+\frac{b_{K, n}}{a_{K, n}}\right)$, and the number 1 are \mathbb{Q}-linearly independent.

Example 1 Let K be a positive integer greater than 1 . As an immediate consequence of Theorem 3 we obtain that the products

$$
\prod_{n=1}^{\infty}\left(1+\frac{7^{j 2^{2([n / 4])}}+n^{n}}{2^{K^{2}\left[\log _{2} n\right]}+5^{n}}\right)
$$

where $j=1, \ldots, K-1$, are \mathbb{Q}-linearly independent.
Our second theorem is a consequence of the previous theorem and deals with the irrationality of infinite products over the rational numbers
Theorem 4 Let ε be a positive real number. Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ are two sequences of positive integers with $\left\{a_{n}\right\}_{n=1}^{\infty}$ non-decreasing and such that $\lim _{\inf }^{n \rightarrow \infty}$ $a_{n}^{\frac{1}{2^{n}}}<$ $\lim \sup _{n \rightarrow \infty} a_{n}^{\frac{1}{2 n}}<\infty$. Assume that $a_{n} \geq n^{1+\varepsilon}$ and $b_{n} \leq a_{n}^{\log _{2}^{-(1+\varepsilon)} \log _{2} a_{n}}$ hold for every large n. Then the product $\prod_{n=1}^{\infty}\left(1+\frac{b_{n}}{a_{n}}\right)$ is an irrational number.
Example 2 From Theorem 4 we obtain that the numbers
are irrational.

References

[1] Choi S., Zhou P.: On linear independence of a certain multivariate infinite product, Canad. Math. Bull. 5, no. 1, (2008), 32-46.
[2] Deajim A., Siksek S.: On the \mathbb{Q}-linear independence of the sums $\sum_{n=1}^{\infty} \frac{\sigma_{k}(n)}{n!}$, J. Number Theory 131, no. 4, (2011), 745-749.
[3] Erdős P.: Some Problems and Results on the Irrationality of the Sum of Infinite Series, J. Math. Sci. 10 (1975), 1-7.
[4] Erdős P.: Erdős problem no. 6, 1995 Prague Midsummer Combinatorial Workshop, KAM Series (95-309), M. Klazar (ed.), (1995), page 5.
[5] Erdős P. and Straus E. G. : On the irrationality of certain series, Pacific Journal of Mathematics, Vol.55, No.1, 1974, 85-92.
[6] Galochkin A. I.: On the linear independence of the values of functions satisfying Mahler's functional equation. (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1997, no. 5, 14-17, 72; translation in Moscow Univ. Math. Bull. 52 (1997), no. 5, 14-17.
[7] Hančl, J.: A criterion for linear independence of series, Rocky Mountain J. Math. 34, no. 1, (2004), 173-186.
[8] Hančl J., Kolouch O.: Erdős' method for determining the irrationality of products. Bull. Aust. Math. Soc. 84, No. 3, 414-424 (2011).
[9] Hančl J., Sobková S. : Special linearly unrelated sequences, J. Math. Kyoto Univ., vol. 46, no. 1, (2006), 31-45.
[10] Hančl J., Tijdeman R.: On the irrationality of factorial series III, Indag. Math. (N.S.) 20, no. 4, (2009), 537-549.
[11] Ivankov P. L.: On the linear independence of some numbers, (Russian) Mat. Zametki 62 (1997), no. 3, 383-390; translation in Math. Notes 62 (1997), no. 3-4, 323-328 (1998).
[12] Nesterenko Yu. V.; Shidlovskii A. B.: On the linear independence of values of Efunctions. (Russian) Mat. Sb. 187 (1996), no. 8, 93-108; translation in Sb. Math. 187 (1996), no. 8, 1197-1211.
[13] Nishioka K.: Mahler functions and transcendence, Lecture notes in mathematics 1631, Springer, (1996).
[14] Vaananen K.; Zudilin V. V.: On the linear independence of the values of the Chakalov series. (Russian) Uspekhi Mat. Nauk 62 (2007), no. 1(373), 197-198; translation in Russian Math. Surveys 62,no. 1, (2007),196-198.

[^0]: ${ }^{1}$ Supported by the grants no. ME09017 and MSM 6198898701
 ${ }^{2}$ Supported by the grant 01798/2011/RRC of the Moravian-Silesian region.

