

ANALYSIS OF RESULTS IN INQUIRY BASED INFORMATICS EDUCATION OF SELECTED TOPICS

Ľubomír Šnajder – Ján Guniš P. J. Šafárik University in Košice, Faculty of Science, Slovakia

Content

- Inquiry based science education
- Project VEMIV
- Acquisition, processing and presentation of information
- The teaching methodology: the bit unit of information
- Summary of research results of teaching
- Conclusion

Inquiry Based Science Education

- pupils progressively developing key scientific ideas,
- pupils use skills employed by scientists,
- aim is therefore, besides the conceptual comprehension of the curriculum, developing pupils' inquiry skills,
 - the formulation of the problem and planning the research,
 - the implementation of the research,
 - analysis and interpretation of the research results,
 - sharing and presentation of results,
 - application and other use of the results.

Project VEMIV

- research on the efficiency of innovative teaching methods of mathematics, physics and informatics,
- focused on developing methodological materials for inquiry-based education,
- verification of the proposed inquiry-based methodologies in schools,
- results of implementation two (of 10) designed inquiry-based methodologies,

Acquisition, processing and presentation of information

- primarily focused on scientific research methods feasible in environment of school informatics,
- relational research problem,
- the methodology was followed by 42 pupils in 26 working groups, 3 teachers,
- we analyzed the results of each pupil (or of each working group).

Acquisition, processing and

Information and Communication Technology in Education

Acquisition, processing and

and Communication Technology in Education

Acquisition, processing and

Acquisition, processing and presentation of information

- little experience and fear of failure => 58 % of research was previously almost clear that the results only confirm the already known facts,
- half of the pupils do not distinguish between dependent and independent variable,
- in only 36 % of cases was used the correlation coefficient,
- incorrect conclusions (42 %) is probably caused by the vague formulation in research,
- influence of teacher to pupil was strong.

- Structure of an inquiry methodology
 - Basic information (topic name, reviewers, methodology version, time allocation of a lesson, target group, prior knowledge and skills, cognitive and affective objectives, expected inquiry skills, didactic problem, didactic means)
 - Preparation (worksheets, applets, diagrams, table, concepTest, set of tasks for verifying the prior knowledge)
 - Course of instruction (5E learning cycle)
 - Observations and findings from teaching
 - Alternatives of the methodology

- Pilot run (2014/2015)
 - 34 pupils (5 classes, 4 schools)
- Ordinary run (2015/2016)
 - 39 pupils (4 classes, 3 schools)
- Evaluation tools
 - pupils' worksheets (13 tasks) and concepTests (10 items)
 - teachers' participatory observations questionnaires

http://ics.upjs.sk/~snajder/bovi/2_bit/

- Analysis of research results of teaching
 - Worksheet (tasks: 1, 5, 6)
 - binary search algorithm discovered and used by 21 %
 -> 44 % (after adding picture)
 - new and interesting (condensed) types of questions
 - after discussion in pairs improvement: 44 % -> 46 %
 - correct number of question: color 74 %, value 59 %
 - 87 % identified a card from given binary code (5 questions)

Information

and Communication Technology in Education

 95 % correctly concluded uniqueness of encoding, only 23 % approached to correct argumentation

- ConcepTest (10 multiple-choice items)
 - experimental group (53 pupils): 59 %
 - control group (28 pupils): 12 % (< 25 % random guessing)
 - 9 from 30 distractors had lower frequency than 10 % (replace)
 - 7 distractor had a higher frequency than correct answer (leave)
 -> teach this subject matter more carefully
- Teachers' feedback after lessons
 - 90' sufficient for basic subject matter, all teachers used worksheets, but only some used applets
 - activities rather interesting and rather difficult for pupils (scale)
 - teacher and also pupils provide help to other pupils

Summary of research results of teaching

- IBE is time consuming and requiring high-level cognitive functions of pupils and teachers
- Solving problems in the form of magic and games more stimulate pupils to develop their inquiry skills
- Importance of worksheets
 - framework for inquiry way of learning and teaching
 - tool for the diagnosis and development inquiry skills
 - helpful for further educational interventions
 (consistently completed pupils' worksheets -> precise results)

Summary of research results of teaching

- Importance of methodological materials
 - structure: specific objectives, tools, course of teaching ...
 - teachers' observations and findings (IBE know-how)
 - alternatives (ideas for the methodology adaptation)
- More scientific approach of IBE learning and teaching
 - results of worksheets and concepTests give more information about pupils' level of understanding of the subject matter and their level of inquiry skills
 - improving methodology based on teachers' feedback after their IBE lessons

Conclusions

- Implementation of IBE in informatics subject
 - IBE methodologies for teachers, materials for pupils (table, diagrams, worksheets, applets ...)
 - 2 types of methodologies (stress -> content, inquiry skills)
 - 3-stage process of teacher training on IBE (roles: inquiry pupil -> inquiry teacher -> author of IBE methodology)
 - cooperation with didactics of physics and mathematics -> beneficial for research and implementation of IBE and STEM.
- Support by the Slovak Research and Development Agency under the contract no. APVV-0715-12

Contacts

Lubomír Šnajder, lubomir.snajder@upjs.sk Ján Guniš, jan.gunis@upjs.sk

P. J. Šafárik University in Košice Faculty of Science Institute of Computer Science Jesenná 5, 041 54 Košice Slovak Republic Phone (office): 00421 55 234 2539 GPS: 48.728888 N, 21.248232 E

Information and Communication Technology in Education