DEVELOPMENT OF INQUIRY SKILLS IN TEACHING LINEAR DEPENDENCE

Information and Communication Technologies in Education 2015, Rožnov pod Radhoštěm Stanislav Lukáč

Programme for International Student Assessment (OECD PISA) 2012

- reducing the level of mathematical literacy of students,
- evaluation of tasks requiring working with different representations of data and understanding of dependencies between quantities,
- illustrative task from the area of finance used in testing (question1, question2)

Implementation of IBSE into mathematics and science education

- International projects PRIMAS, FIBONACCI (http://www.primas-project.eu/) (http://www.fibonacci-project.eu/)
- National projects Modernization of education at primary and secondary schools (https://www.modernizaciavzdelavania.sk/)
© Current project: Research on the efficiency of innovative teaching methods in mathematics, physics and informatics education

Classification of inquiry skills (Berg, 2013)

1. Determining the problem and planning of the experiment / model:
> to formulate a question, hypothesis,
> to propose a model,
> to develop a procedure to test the hypothesis.
2. Making the experiment / modelling:
> to construct the model,
> to record results.

Classification of inquiry skills (Berg, 2013)

3. Analysis and interpretation of the experiment / model:
> to transform the results into transparent tables, graphs,
> to interpret results and discuss the suitability / limitations of the modelling process,
> to express relationships between variables.
4. Sharing and presentation:
> to present results,
> to find appropriate arguments to justify relations.
5. Application and further exploitation:
> to make hypotheses for further investigation,
> to apply modelling procedures to new problems.

Preparation of the presest for experimental classroons

- trying of the first version of the pre-test containing 13 tasks,
o the task for diagnosing the skills to interpret the relationships expressed in the form of symbolic notations,
o the task for diagnosing the skills to express relationships between variables using symbolic notations.

Innovative lessons plans and teaching materials

- experimental teaching in the first and second year of secondary school,
- selected topics of divisibility, plane geometry, functions,
- motivation tasks, worksheets, interactive learning activities,
○ tools for formative assessment.

Uniform linear motion

Investigation of linear dependence

The production of work pieces in the workshop
1. How many work pieces were in the workshop at the end of the first day: $\mathrm{p} 1=42$
2. How many work pieces were in the workshop at the end of the working week: $\mathrm{p} 2=0$
3. Use the sliders to set the numbers of work pieces produced in different days of the week, so that the total number of work pieces in a workshop at the end of each day grows linearly over time.
180

The graph of linear function

- How does the graph of a linear function change if we decrease the value of the coefficient a to 0.5 ; $-0.5 ;-1$; ...?
- What is a relative position of graphs of linear functions $f: y=2 x-5$ and $g: y=5 x+3$?
© Determine the coordinates of the intersection point of graphs of all linear functions given by the formula $y=a x-2$, where a is any real number different from 0.
- Is there a linear function whose graph is perpendicular to the x axis?

Finding symbolic representation of a linear function

Discussion

- questionnaires to express initial experience and opinions of teachers,
- use of arithmetic and dynamic graphical models,
- students' problems with the formulation and generalization of discovered findings,
- teachers should also require explanation of students' conclusions and finding adequate arguments for their justification,
© teachers' evaluation of the first version of pre-test.

THANK YOU FOR YOUR ATTENTION

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0715-12.

Doc. RNDr. Stanislav Lukáč,
P. J. Šafárik University in Košice, Faculty of science, Slovakia stanislav.lukac@upjs.sk

