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Abstract 
 
This case study concerns vertical errors of five different high-resolution digital elevation models (DEMs) originated from 
light detection and ranging (LiDAR), interferometric SAR (InSAR) and photogrammetric acquisition. The LiDAR DEM 
derived from last return points was considered as the reference DEM. The aim was to analyse the statistical and spatial 
distribution of the residuals and their relationship with the DEM surface roughness of the analysed DEMs. Surface 
roughness measured as area ratio and inverted vector strength were used to parameterise the DEM surface. The results 
show that globally no linear relationship exists between the surface roughness and DEM residuals but it was found to be 
very diverse locally. High elevation errors occurred along DEM artefacts and sharply defined landforms. The applied 
surface roughness parameters were found to be useful predictors of such features and could be used for identification of 
such features.  
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1. Introduction  
 
Much work has been expended on developing digital 
representations of the Earth’s surface. Digital elevation 
models (DEMs) as regular grids of values are the most 
widely used forms of such representations. Nation-wide 
detailed DEMs were traditionally generated of data 
acquired by photogrammetry or digitizing topographic 
maps. The advance of technology in the last two decades 
enabled highly accurate data collection by laser detection 
and ranging (LiDAR) and interferometric SAR (InSAR). 
The methods used for elevation data acquisition and 
processing have a marked impact on the quality of 
derived DEM and other parameters of the DEM surface 
(Wilson and Gallant, 2000, Hengl and Reuter, 2008). For 
that reason, the accuracy of how well the digital 
representation approximates the real earth surface is of 
principal interest for academics as well as practitioners.  
 
Vertical accuracy of DEM (DEM error) has long been 
the most widely used measure of DEM quality. Vertical 
errors are typically calculated as residuals (differences) 
between the validated DEM data points and a more 
accurately measured sample. The mean error (ME) and 
root mean squared error (RMSE) are the standard 
measures of DEM accuracy. However, many recent 
studies recognize the need for more diverse 
parameterisation of DEM quality. DEM derived data 
became an assessment tool rather than just a product of 
geomorphometric analysis (Chaplot et al. 2006, Fisher 
and Tate, 2006). In order to understand and predict the 

errors, researchers attempted to quantify the error 
distribution and identify relationship with the surface 
properties such as slope angle, slope aspect or curvature 
(Gao 1997, Wise 2008, Erdogan, 2010). Another 
approach of DEM error modelling involves stochastic 
simulation of the error field assuming its distribution is 
normal Gaussian and stationary parameterised by the ME 
and RMSE.  
 
1.1 Two types of DEM error  
 
One can distinguish two basic approaches for DEM error 
calculation. The first comprises residuals based on a 
single dataset split into two parts one of which is used for 
DEM production while the other is not used and remains 
for validation of the DEM. Cross-validation, or jack-
knifing are examples of such a technique. The errors can 
be regarded as measures of robustness or reliability of 
the spatial prediction with respect to the input data rather 
than the accuracy or a goodness-of-fit of the DEM to the 
real topography. Desmet (1997), Wise (2008) or Erdogan 
(2010) conducted such assessment and found significant 
correlation of DEM vertical errors and DEM 
geomorphometric parameters. The findings were based 
on differences between a high-resolution DEM and the 
DEM interpolated to coarser resolutions. However, the 
RMSE reflected DEM error of the resampled DEM 
versions with respect to the source DEM and, although 
useful, it does not suggest much about the RSME 
measured with respect to a more precisely measured set 
of elevations. This represents another approach of DEM 
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error calculation traditionally done by taking a relatively 
small number of more accurate reference observations 
with respect to a large number of cell values comprising 
the evaluated DEM. The limited number of reference 
sample constrained the characterisation of the DEM error 
to global summary statistics such as mean error and 
RMSE.  In order to model the DEM error for each data 
point of the tested DEM the measures are used to 
parameterise the statistical distribution of the error and 
an assumption was accepted that the distribution is 
normal and stationary. It was recognised that a more 
realistic approach of DEM error modelling is to assume 
spatially autocorrelated error field (Hunter and 
Goodchild 1997, Wechsler and Kroll 2006). The advance 
of rapid acquisition by LiDAR provided sources of dense 
and highly accurate coverage of elevation data points 
which can be regarded as the most realistic and more 
accurate representation of the real earth surface. The data 
are available as reference points for every location of the 
assessed DEM given the spatial resolution of the 
validated DEM dataset is the same or lower. This 
potential of LiDAR data is explored in the paper. 
 
1.2 Local analysis of DEM error 
 
It is generally accepted that the measurement errors are 
not spatially random but a relationship exists with 
surface geometry. Quantifying the relationship is useful 
for the purposes of error modelling and propagation and 
has been the focus of research for more than a decade. 
The error distribution can be described by local 
indicators of spatial analysis as proposed in Anselin 
(2003). Variograms, Moran’s I or Getis’ C are the most 
popular (Lloyd, 2006). Ordinary least squares (OLS) 
linear regression or its logarithmic variants are generally 
used to define the relationships. These can be considered 
as global approaches which indicate trend for the entire 
population not considering geographical location. 
However, the correlation between the morphometric 
parameter and DEM error can be stronger in some places 
and weaker in others, or it can be positive or negative 
locally. In such cases, approaches which take 
geographical location into account and adapt regression 
parameters can be used to improve the understating 
between two variables. Geographically weighted 
regression (GWR) is one of the most recent tools for 
local regression especially popular in social and 
economic geographic studies. The technique is described 
in detail by its developers in Fotheringham et al. (2002). 
Carlisle (2005) used OLS for DEM error modelling 
noting that GWR could improve the predictions if a 
larger reference dataset is used. Erdogan (2010) 
conducted such GWR modelling of error of interpolated 
DEM from levelling data. The errors were the product of 
a jack-knifing procedure of DEMs interpolated to coarser 
resolutions.  

 
This paper uses a similar framework as presented in 
Erdogan (2010) but LiDAR data are used as the 
reference sample. The data are sampled on a similar 
sampling density as the evaluated DEM. It was assumed 
that inference based on such error field keeping the 
working scale constant provided a more realistic picture 
of the DEM quality and so improves its understanding. 
 
2. Study site and data  
 
The datasets used for the research cover an area of the 
Great Langdale Valley in the Lake District, Cumbria, 
England.  The site is approximately 1500 by 1500 metres 
in extent and was chosen due to its considerable variation 
of terrain and spatial overlap of diverse ready-to-use 
commercial DEMs. The DEM data were generated from 
data collected by airborne remote sensing with the stated 
vertical accuracy and sampling density as follows: 
LiDAR (0.25 m, 2 m), InSAR (1 - 2.5 m, 5 m), 
photogrammtery (1.5 m, 10 m) and digitized contour 
lines (2.5 – 5 m, 10 m). All datasets were digital 
representations of the terrain surface (‘bald earth’, DTM) 
except the InSAR data of which both terrain and 
topographic surface models were provided (DSM). All 
the data sets are proprietary DEM products provided as 
fine resolution grids, except the LiDAR points, projected 
in the OSGB36 coordinate system. The spatial resolution 
of each DEM type was almost identical to its sampling 
density, but different between the DEM types. For the 
purposes of this study the data were considered 
comparable after they were resampled to 5 metre grids 
which refers to working scale about 1:10 000. The DEMs 
thus comprised about 81 000 cell values. 
 
3. Methods 
 
A reference DEM (DEMREF) was interpolated from the 
LiDAR points of last return (ca. 2 m spacing) with 
inverse distance weighting and the cell-size of 5 metres 
to match the resolution of the resampled DEMs. The 
rationale for the interpolation of the relatively dense field 
of LiDAR points was to estimate the elevation exactly on 
locations of the observed values which were the centres 
of grid cells of the resampled DEMs. The DEMREF was 
subtracted from the other four DEMs (InSAR DSM, 
InSAR DTM, Photog. DTM, Cont. DTM). (Residuals 
DEM = DEM – DEMREF). Thus, the difference surfaces 
of the same spatial resolution were generated. The DEM 
residuals were masked on locations where above-ground 
surface objects were present (Fig. 1 C). Subsequently, 
statistical and spatial distribution of the DEM residuals 
was characterised by global summary statistics and 
measures of spatial autocorrelation which are presented 
in Tab. 1. 
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Tab. 1. Summary statistics of the DEM residuals. 

 
Morphometry of the DEMs was parameterised by two 
measures of surface roughness – area ratio and inverted 
vector strength (Fisher’s K) defined in Grohman (2004). 
Both parameters were calculated for a 5x5 moving-
window neighbourhood. It was hypothesized that the 
variation of residual values can be related to the local 
variation in slope angle and slope aspect, rather than 
directly to their values. Frequency and spatial 
distribution of aspect values depend on the section of 
landscape and its configuration, thus investigating 
relationships directly via aspect values would be biased 
or inconsistent. Also, conducting regression would be 
complicated due to circularity of aspect values. Area 
ratio roughness is the ratio of real surface area to the area 
of its orthogonal projection. Fisher’s K defines the 
dispersion of unit vectors normal to the surface. While 

the first measure is sensitive to the local variation of the 
slope angle the latter is sensitive to the variation of the 
slope aspect. Very weak negative linear relationship was 
identified between the two roughness measures so that 
they were considered uncorrelated. The relationship 
between the DEM residuals and the corresponding DEM 
roughness was analysed with OLS and GWR. The GWR 
parameters were calculated for the grid nodes of the 
DEMs. The Gaussian kernel and bandwidth of 15 metres 
were used. All the data were analysed and visualized in 
R (R Development Core Team, 2008) and GRASS GIS 
(GRASS Development Team, 2008). Details on the 
calculation of Moran’s I and GWR can be found in 
Bivand et al. (2008). The summary statistics of OLS and 
GWR coefficient of determination (R2) are found in 
Tab. 2.  

 
Tab. 2 Summary statistics of R2 for OLS and GWR of the DEM residuals and corresponding roughness of the 
DEMs. 

GWR R2 DEM residuals against 
DEM roughness OLS R2 1st Qrt Median 3rd Qrt 
InSAR DSM vs AR 0.024 0.273 0.497 0.676 
InSAR DTM vs AR 0.03 0.185 0.402 0.642 
Photog.DTM vs AR  0.016 0.235 0.466 0.692 
Cont. DTM vs AR 0.014 0.234 0.466 0.711 
InSAR DSM vs K 0.023 0.202 0.456 0.668 
InSAR DTM vs K 0.016 0.184 0.405 0.638 
Photog.DTM vs K 0.001 0.201 0.427 0.665 
Cont. DTM vs K 0.017 0.187 0.419 0.683 

AR - area ratio, K - Fisher's K roughness 
 
4. Results  
 
The summary statistics of DEM residuals presented in 
Tab. 1 provide an approximate picture of their 
distribution. The RMSEs are much higher than the stated 
accuracy which can be attributed to the considerable 
variation of terrain. In terms of spatial structure, Moran's 
I indicated significant spatial clustering of the DEM. 
Random spatial variation of residuals was more 
dominant in areas where no trend in elevation was 
present, such as the flat valley floor. However, the 
residuals were more spatially autocorrelated on slopes, 
generally across areas with a large scale trend present in 

the DEM. D’Agositno tests showed the residuals for each 
DEM were not normally distributed. Normal probability 
plots suggested normal distribution within the high 
frequency domain but the more extreme residual values 
deviate (tails of distribution of the residuals).  
 
The spatial pattern of the DEM surface was apparent and 
any artefacts clearly visible in the roughness maps. 
InSAR DSM and less so the LiDAR DEMREF exhibit 
very high degree of roughness which explains the 
patterns of slope angle and profile curvature. The 
inclined part of the area appears as rough and can be 
clearly distinguished from flat valley floor. As the area 

DEM type 1st  
Quartile * 

Median * 3rd 

 Quartile * 
Mean * Standard 

 deviation * 
RMSE * Moran's I Moran's I  

z-score 
InSAR DSM -0.86 -0.26 0.35 0.05 3.66 3.66 0.83 2.34 
InSAR DTM -1.15 -0.30 0.48 -0.09 3.67 3.67 0.91 2.58 
Photog. DTM -1.29 -0.21 0.90 -0.38 2.67 2.70 0.91 2.56 
Cont. DTM -1.98 -0.28 1.30 -0.37 3.02 3.04 0.90 2.53 
DSM - digital landscape canopy surface model, DTM - digital terrain model (ground surface model) 
* in metres 
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ratio map was based on slope angle, the effect of the 
larger-scale trends in the elevation data causes a bias in 
the area ratio due to the overall inclination within the 
moving window. The area ratio roughness distinguished 
the InSAR DTM, Photog. DTM, Cont. DTM as smooth 
surfaces while InSAR DSM manifested as the roughest 
surface especially within the valley floor even though the 
region is flat and relatively smooth on the LiDAR 
DEMREF (Fig. 1). 
 
The DEMs were more distinct in terms of the surface 
roughness if measured as Fisher’s K than area ratio. This 

clearly identified the InSAR DSM as very rough due to 
the random short-range noise which was markedly 
filtered out in the InSAR DTM. Also the regions 
appearing as rough on area ratio maps were smooth in 
the Fisher’s K maps. These are artificially smoothed west 
facing slopes of deep gorges and narrow ridges 
identifiable in the InSAR DEMs and LiDAR DEMREF. 
The findings of the OLS regression reported in Tab. 2 
show no apparent linear relationship between surface 
roughness and the DEM residuals. However, locally the 
relationship is evident and geographically weighted 
approach increases the R2 on average (Fig. 1 D). 

 

 
Figure 1. Examples of the analyses map outputs. A – InSAR DSM area ratio roughness, B – InSAR DSM Fisher’s K 
roughness, (the roughness increases from white to black tones), C – InSAR DSM elevation residuals with masked above-
ground surface objects (R2 increase from white to black tones), D – R2 of the GWR between InSAR DSM residuals and 
InSAR DSM area ratio roughness, E - InSAR shaded relief, and F – LiDAR DEMREF shaded relief. 
 
5. Conclusions 
 
The results show that globally no linear relationship 
exists between the surface roughness and DEM residuals 
but it can be very diverse locally. High elevation error 
occurs along DEM artefacts and sharply defined 
landforms which can be easily identified by area ratio 
and inverted vector strength surface roughness. Local 
approach with GWR provided evidence of locally 
existing relationship with surface roughness. The 

relationship between DEM errors and DEM roughness is 
diverse on local level. Problematic locations of DEMs 
were related to DEM artefacts and rough topography. 
The approach applied in the paper is useful for their 
identification and further treatment. The research also 
shows that the assumption of stationarity and Gaussian 
distribution of the DEM error field is questionable, but 
further research is needed to explore the spatial 
relationship between residuals and surface morphometry 
or land cover. Future work should focus on validation of 
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traditional approaches of DEM error modelling. For 
example, conditional stochastic simulation as presented 
in Hunter and Goodchild (1997) or Wechsler and Kroll 
(2006) could be carried out with respect to the calculated 
DEM residuals distribution parameters under the 
assumption that the residuals provide the true picture of 
DEM error distribution and its complete coverage.  
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